
by

With the HMPP™ target generators,
instantaneously prototype and evaluate
the performance of the hardware-
accelerated critical functions.

The code generators are specifically
designed to extract the most of data
parallelism from your C and Fortran kernels
and translate them into NVIDIA® CUDA™,
AMD CAL/IL and/or OpenCL.

HMPP Workbench includes a C and
Fortran compiler, code generators and
a runtime that seamlessly integrate in
your environment and make use of the
NVIDIA CUDA, AMD CAL/IL or OpenCL
development tools and drivers.

Rapidly integrate hardware
accelerators in your application
while preserving its portability.

Provide software developers with
standard programming tools that
keep their applications interoperable
with your evolutive hybrid platforms.

Embedd HMPP in your product
and offer a single software that
leverages the computing power of
all the different confi gurations of your
customers manycore platforms.

Developers OEMs ISVs

Rapidly develop GPU accelerated applications
with a source to source tool

A hybrid compiler
with powerful CUDA - CAL/IL - OpenCL generators

Benefi t from
the performance of
GPU accelerated
systems while
reducing your
development efforts

• Protect your software
investment

• Remain independent from
the hardware platform

• Do not lock to a vendor
specifi c API

• Work with C and Fortran
standard compilers

• Distribute computations
between CPU and
accelerators

• Provide hardware
interoperability

• Complementary to
OpenMP™ and MPI

Portability

Scalability

HMPP, the best way to master performance

Based on a set of OpenMP™-like directives that
preserve legacy codes, HMPP fully leverages the
performance offered by most of today’s stream
processors and vector units.
HMPP offers a standardized interface between your
scientifi c algorithm and fast evolving target code

by insulating hardware specifi c implementation of
functions from your legacy code.

Complementary to OpenMP and MPI, HMPP lets
you develop parallel hybrid applications that mix
the best of today’s available parallel tools.

HMPP directives:
a high level abstraction for manycore programming

By providing different target versions of computations
that are offloaded to the available hardware
compute units, an HMPP application dynamically

adapts its execution to multi-GPUs systems and
platform confi guration. This guarantees the
scalability and interoperability of your application.

Dynamic application scaling

CAPS entreprise - Immeuble CAP Nord - 4A Allée Marie Berhaut - 35000 Rennes - France
Tel.: +33 (0)2 22 51 16 00 - contact@caps-entreprise.com - www.caps-entreprise.com

In C and Fortran applications, the HMPP directives let you
define and execute codelet functions to be offloaded
in GPU accelerators.

In the main application, indicate the call sites of the
codelets and their synchronous or asynchronous
execution property.
By preloading data before the execution of the codelets
and uploading the results whenever they are required
in the main application, you optimize the use of the
memory bandwidth.

Pipeline GPU computations and implement effi cient
CPU-GPU communication patterns that leverage the
computation power of GPUs.

Use the asynchronous property of the directives to
interlace data transfers and codelet execution. Build
real hybrid computations that distribute their workload
over the compute units.

A set of directives
to develop manycore applications

Innovative software for manycore paradigms

Supported platforms and compilers
GPUs
- All NVIDIA® Tesla™
- NVIDIA® CUDA™ compatible graphics products (GTX280, Quadro FX5800,

GeForce 8800GTX, 9xx, ...)
- AMD FireStream™ 9170, 9250
- CAL compatible graphics products

Compilers
- GNU gcc 4.1 and above
- Intel icc version 9.1 and above
- Intel ifort version 9.1 and above

Operating systems

- Any x86_64 kernel 2.6 Linux distribution with libc coming with g++
4.x and above.

- HMPP has been validated with some of the below Linux
distributions:

Debian 4.0 and above•
RedHat Entreprise Linux 5.x and above•
OpenSuse 11.x and above•
SLES 11.0•
Ubuntu 8.10•
...•

- Windows

#pragma hmpp sgemm codelet, args[m;n;k;alpha;beta;a;b].io=in, &
#pragma hmpp sgemm args[c].io=inout, target=CUDA:BROOK
void sgemm(int m, int n, int k,
 fl oat alpha, fl oat a[m][k], fl oat b[k][n],
 fl oat beta, fl oat c[m][n]);

int main(int argc, char **argv) {

...

/* Allocate device and memory */
#pragma hmpp sgemm allocate, args[c].size={M,N}
/* Prefetch all data, alpha and beta are constant */
#pragma hmpp sgemm advancedload, args[alpha;beta;a;b;c], &
#pragma hmpp sgemm args[m;n;k;n;alpha;beta].const=true
...

#pragma hmpp sgemm callsite, args[alpha;beta;a;b;c].advancedload=true, &
#pragma hmpp sgemm asynchronous
 sgemm(M, N, K, alpha, t1, t2, beta, t3);

/* asynchronous execution barrier */
#pragma hmpp sgemm synchronize
/* retrieve c output data */
#pragma hmpp sgemm delegatedstore, args[c]
/* release the device */
#pragma hmpp sgemm release
...

 return 0;
}

A single compilation command

From the HMPP annotated application, HMPP separately compiles the native
host application and the GPU accelerated codelet functions as software
plugins.

The codelets are translated in the NVIDIA CUDA and/or AMD CAL/IL by the
HMPP Target Generator and compiled with the hardware vendor tools.
Linked with the HMPP Runtime, the native host application is able to execute
stand-alone or to load and run the target codelet libraries when GPUs are
present and available.

The HMPP Workbench seamlessly integrates with your standard optimizing
compiler and the hardware vendor tools.

